Abstract

Fibrosis is a major cause of loss of renal function in autosomal dominant polycystic kidney disease (ADPKD). In this study, we examined whether vasopressin type-2 receptor (V2R) activity in cystic epithelial cells can stimulate interstitial myofibroblasts and fibrosis in ADPKD kidneys. We treated Pkd1 gene knockout (Pkd1KO) mice with dDAVP, a V2R agonist, for 3 days and evaluated the effect on myofibroblast deposition of extracellular matrix (ECM). We also analyzed the effects of conditioned media from primary cultures of human ADPKD cystic epithelial cells on myofibroblast activation. Because secretion of the profibrotic connective tissue growth factor (CCN2) increased significantly in dDAVP-treated Pkd1KO mouse kidneys, we examined its role in V2R-dependent fibrosis in ADPKD as well as that of yes-associated protein (YAP). V2R stimulation using dDAVP increased the renal interstitial myofibroblast population and ECM deposition. Similarly, conditioned media from human ADPKD cystic epithelial cells increased myofibroblast activation in vitro, suggesting a paracrine mechanism. Renal collecting duct-specific gene deletion of CCN2 significantly reduced cyst growth and myofibroblasts in Pkd1KO mouse kidneys. We found that YAP regulates CCN2, and YAP inhibition or gene deletion reduces renal fibrosis in Pkd1KO mouse kidneys. Importantly, YAP inactivation blocks the dDAVP-induced increase in myofibroblasts in Pkd1KO kidneys. Further in vitro studies showed that V2R regulates YAP by an ERK1/2-dependent mechanism in human ADPKD cystic epithelial cells. Our results demonstrate a novel mechanism by which cystic epithelial cells stimulate myofibroblasts in the pericystic microenvironment, leading to fibrosis in ADPKD. The V2R-YAP-CCN2 cell signaling pathway may present a potential therapeutic target for fibrosis in ADPKD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.