Abstract

Autosomal dominant polycystic kidney disease (ADPKD) cyst enlargement is exacerbated by accumulation of fluid within the lumen of the cyst. Extracellular nucleotides and nucleosides stimulate fluid and chloride (Cl-) secretion across epithelia and are potent autocrine and paracrine agonists within tissues. This study tests the hypothesis that ATP may be released by ADPKD epithelial cells. Once released, extracellular nucleotides and their metabolites may become "trapped" in the cyst lumen. As a consequence, extracellular ATP may augment ADPKD cyst enlargement through stimulation of salt and water secretion across ADPKD epithelia that encapsulate ADPKD cysts. To test this hypothesis, bioluminescence detection assays of ATP released from primary cultures of human ADPKD epithelial cells were compared with non-ADPKD human epithelial primary cultures. ADPKD cultures release comparable or greater amounts of ATP than non-ADPKD cultures derived from proximal tubule or cortex. ATP release in both ADPKD and non-ADPKD primary epithelial monolayers was directed largely into the apical medium; however, basolateral-directed ATP release under basal and stimulated conditions was also observed. Hypotonicity potentiated ATP release into the apical and basolateral medium in a reversible manner. Reconstitution of isotonic conditions with specific osmoles or inhibition with mechanosensitive ion channel blockers dampened hypotonicity-induced ATP release. "Flash-frozen" cyst fluids from ADPKD cysts, harvested from multiple donor kidneys, were screened by luminometry. A subset of cyst fluids contained as much as 0.5 to 10 microM ATP, doses sufficient to stimulate purinergic receptors. Taken together, these results show that ADPKD and non-ADPKD human epithelial primary cultures release ATP under basal and stimulated conditions and that ATP is released in vitro and into the cyst fluid by cystic epithelial cells in concentrations sufficient to stimulate ATP receptors. It is hypothesized that extracellular nucleotide release and signaling may contribute detrimentally to the gradual expansion of cyst fluid volume that is a hallmark of ADPKD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call