Abstract

Epithelial ovarian cancer(EOC) is the most lethal of all gynecologic tumors. Cancer spheroid culture is a widely used model to study cancer stem cells. Previous studies have demonstrated the effectiveness of cytokine‑induced killer(CIK) cell‑based therapies against cancer and cancer stem cells. However, it is not clear how EOC spheroid cells respond to CIK‑mediated cellular lysis, and the mechanisms involved have never been reported before. A flow cytometry‑based method was used to evaluate the anti‑cancer effects of CIK cells against adherent A2780 cells and A2780 spheroids. To demonstrate the association between hypoxia inducible factor‑1α(HIF1A) and intercellular adhesion molecule‑1(ICAM‑1), two HIF1A short hairpin RNA(shRNA) stable transfected cell lines were established. Furthermore, the protein expression levels of hypoxia/HIF1A‑associated signaling pathways were evaluated, including transforming growth factor‑β1(TGF‑β1)/mothers against decapentaplegic homologs(SMADs) and nuclear factor‑κB(NF‑κB) signaling pathways, comparing A2780 adherent cells and cancer spheroids. Flow cytometry revealed that A2780 spheroid cells were more resistant to CIK‑mediated cellular lysis, which was partially reversed by an anti‑ICAM‑1 antibody. HIF1A was significantly upregulated in A2780 spheroids compared with adherent cells. Using HIF1A shRNA stable transfected cell lines and cobalt chloride, it was revealed that hypoxia/HIF1A contributed to downregulation of ICAM‑1 in A2780 spheroid cells and adherent cells. Furthermore, hypoxia/HIF1A‑associated signaling pathways, TGF‑β1/SMADs and NF‑κB, were activated in A2780 spheroid cells by using western blotting. The findings indicate that EOC stem‑like cells resist the CIK‑mediated cellular lysis via HIF1A‑mediated downregulation of ICAM‑1, which may be instructive for optimizing and enhancing CIK‑based therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.