Abstract

Mouse mammary epithelial cells expressing a fusion protein of c-Fos and the estrogen receptor (FosER) formed highly polarized epithelial cell sheets in the absence of estradiol. Beta-catenin and p120(ctn) were exclusively located at the lateral plasma membrane in a tight complex with the adherens junction protein, E-cadherin. Upon activation of FosER by estradiol addition, cells lost epithelial polarity within two days, giving rise to a uniform distribution of junctional proteins along the entire plasma membrane. Most of the beta-catenin and p120(ctn) remained in a complex with E-cadherin at the membrane, but a minor fraction of uncomplexed cytoplasmic beta-catenin increased significantly. The epithelial-mesenchymal cell conversion induced by prolonged estradiol treatment was accompanied by a complete loss of E-cadherin expression, a 70% reduction in beta-catenin protein level, and a change in the expression pattern of p120(ctn) isoforms. In these mesenchymal cells, beta-catenin and p120(ctn) were localized in the cytoplasm and in defined intranuclear structures. Furthermore, beta-catenin colocalized with transcription factor LEF-1 in the nucleus, and coprecipitated with LEF-1-related proteins from cell extracts. Accordingly, beta-catenin- dependent reporter activity was upregulated in mesenchymal cells and could be reduced by transient expression of exogenous E-cadherin. Thus, epithelial mesenchymal conversion in FosER cells may involve beta-catenin signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call