Abstract

In this work, we show a detailed engineering route of the first piezoelectric nanostructured epitaxial quartz-based microcantilever. We will explain all the steps in the process starting from the material to the device fabrication. The epitaxial growth of α-quartz film on SOI (100) substrate starts with the preparation of a strontium doped silica sol-gel and continues with the deposition of this gel into the SOI substrate in a thin film form using the dip-coating technique under atmospheric conditions at room temperature. Before crystallization of the gel film, nanostructuration is performed onto the film surface by nanoimprint lithography (NIL). Epitaxial film growth is reached at 1000 °C, inducing a perfect crystallization of the patterned gel film. Fabrication of quartz crystal cantilever devices is a four-step process based on microfabrication techniques. The process starts with shaping the quartz surface, and then metal deposition for electrodes follows it. After removing the silicone, the cantilever is released from SOI substrate eliminating SiO2 between silicon and quartz. The device performance is analyzed by non-contact laser vibrometer (LDV) and atomic force microscopy (AFM). Among the different cantilever's dimensions included in the fabricated chip, the nanostructured cantilever analyzed in this work exhibited a dimension of 40 µm large and 100 µm long and was fabricated with a 600 nm thick patterned quartz layer (nanopillar diameter and separation distance of 400 nm and 1 µm, respectively) epitaxially grown on a 2 µm thick Si device layer. Themeasuredresonance frequency was267 kHz and the estimated quality factor, Q, of the whole mechanical structure was Q ~ 398 under low vacuum conditions. We observed the voltage-dependent linear displacement of cantilever with both techniques (i.e., AFM contact measurement and LDV). Therefore, proving that these devices can be activated through the indirect piezoelectric effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.