Abstract
We synthesized titanium oxide thin films on MgO(100) single-crystal substrates by two reactive deposition methods and compared the structures of the thin films formed by these methods. In one method (pulsed-molecular-beam deposition method), molecular oxygen is supplied to the substrates by using a pulsed-molecular-oxygen beam source and deposition of one unit layer of titanium and subsequent supply of molecular oxygen are repeatedly performed. In the other method (radical beam deposition method), atomic oxygen is irradiated to the substrates by using an atomic oxygen beam generated by the radical beam source and irradiation of the atomic oxygen and deposition of titanium are simultaneously performed. In the case of the pulsed-molecular-beam deposition method, the crystal structure was changed by increasing the number of oxygen pulses supplied from the beam source. We found that the crystal structure of titanium oxide depended on the composition ratio of O:Ti in the film. The maximum ratio of O:Ti attainable by this method was 1.85, and at this ratio, (100)-oriented pseudorutile was formed. In the case of the radical beam deposition method, (100)-oriented anatase was formed below the titanium deposition rate of 0.10 nm/s and pseudorutile (TiO 2− δ ) was formed above 0.15 nm/s. The pseudorutile structure synthesized on this experiment was very stable in air. We concluded that the crystal structure of the pseudorutile is a new crystal structure of titanium oxide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.