Abstract
In doped manganites, a substantial tuning of the magnetic and electrical transport properties can be realized by engineering the concentration of oxygen vacancies. To date, most oxygen-deficient La1−xSrxMnO3−δ (0 ≤ x ≤ 1) films are synthesized by after-growth treatments. However, the direct growth of La1−xSrxMnO3−δ films remains challenging due to the metastability of this material. Here, we report the epitaxial growth of high quality single crystalline La0.67Sr0.33MnO3−δ films with an extremely large out-of-plane lattice parameter of 4.26 Å by reactive oxide molecular beam epitaxy. To stabilize this metastable phase, Sr3Al2O6 buffer layers are used to block the oxygen diffusion from the SrTiO3 substrate to the film during the growth process. This work provides an efficient way to obtain metastable La0.67Sr0.33MnO3−δ films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.