Abstract
Odontogenesis is governed by a complex network of intercellular signaling events between the dental epithelium and mesenchyme. This network leads to the progressive determination of tooth shape, and to the differentiation of these tissues into enamel-producing ameloblasts and dentin-producing odontoblasts respectively. Among the main signaling pathways involved in the regulation of tooth development, Bone Morphogenetic Protein (BMP), Sonic hedgehog (Shh) and Wingless-type MMTV integration site (Wnt) pathways have been reported to play significant roles. Recently, the phenotype of mice deficient in Epiprofin/Sp6 (Epfn) has been found to present striking dental abnormalities, including a complete lack of differentiated ameloblasts and consequently no enamel, highly altered molar cusp patterns and the formation of multiple supernumerary teeth. In this article, we review the interaction of Epfn with the BMP, Shh and Wnt pathways in the regulation of tooth development, based on the data obtained from the study of several genetically modified mice.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have