Abstract

Automatic seizure detection plays a significant role in monitoring and diagnosis of epilepsy. This paper presents an efficient automatic seizure detection method based on Stockwell transform (S-transform) and bidirectional long short-term memory (BiLSTM) neural networks for intracranial EEG recordings. First, S-transform is applied to raw EEG segments, and the obtained matrix is grouped into time-frequency blocks as the inputs fed into BiLSTM for feature selecting and classification. Afterwards, postprocessing is adopted to improve detection performance, which includes moving average filter, threshold judgment, multichannel fusion, and collar technique. A total of 689 h intracranial EEG recordings from 20 patients are used for evaluation of the proposed system. Segment-based assessment results show that our system achieves a sensitivity of 98.09% and specificity of 98.69%. For the event-based evaluation, a sensitivity of 96.3% and a false detection rate of 0.24/h are yielded. The satisfactory results indicate that this seizure detection approach possess promising potential for clinical practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call