Abstract

Automatic seizure detection is of great importance for speeding up the inspection process and relieving the workload of medical staff in the analysis of EEG recordings. In this study, a method based on an improved wavelet neural network (WNN) is proposed for automatic seizure detection in long-term intracranial EEG. WNN combines the traditional back propagation neural network (BPNN) with wavelet transform. Compared with classic WNN architectures, a modified point symmetry-based fuzzy c-means (MSFCM) algorithm is applied to the initialization of wavelet transform's translations, which has been successful in multiclass cancer classification. In addition, Fast-decaying Morlet wavelet is chosen as the activation function to make the WNN learn faster. Relative amplitude and relative fluctuation index are extracted as a feature vector to describe the variation of EEG signals, and the feature vector is then fed into WNN for classification. At last, post-processing including smoothing, channel fusion and collar technique is adopted to achieve more accurate and stable results. This system performs efficiently with the average sensitivity of 96.72%, specificity of 98.91% and false-detection rate of 0.27h−1. The proposed approach achieves high sensitivity and low false detection rate, which demonstrates its potential for clinical usage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.