Abstract
BackgroundDNA methylation is a key epigenetic mechanism that is suggested to be associated with blood lipid levels. We aimed to identify CpG sites at which DNA methylation levels are associated with blood levels of triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and total cholesterol in 725 participants of the Rotterdam Study, a population-based cohort study. Subsequently, we sought replication in a non-overlapping set of 760 participants.ResultsGenome-wide methylation levels were measured in whole blood using the Illumina Methylation 450 array. Associations between lipid levels and DNA methylation beta values were examined using linear mixed-effect models. All models were adjusted for sex, age, smoking, white blood cell proportions, array number, and position on array. A Bonferroni-corrected p value lower than 1.08 × 10−7 was considered statistically significant. Five CpG sites annotated to genes including DHCR24, CPT1A, ABCG1, and SREBF1 were identified and replicated. Four CpG sites were associated with triglycerides, including CpG sites annotated to CPT1A (cg00574958 and cg17058475), ABCG1 (cg06500161), and SREBF1 (cg11024682). Two CpG sites were associated with HDL-C, including ABCG1 (cg06500161) and DHCR24 (cg17901584). No significant associations were observed with LDL-C or total cholesterol.ConclusionsWe report an association of HDL-C levels with methylation of a CpG site near DHCR24, a protein-coding gene involved in cholesterol biosynthesis, which has previously been reported to be associated with other metabolic traits. Furthermore, we confirmed previously reported associations of methylation of CpG sites within CPT1A, ABCG1, and SREBF1 and lipids. These results provide insight in the mechanisms that are involved in lipid metabolism.
Highlights
DNA methylation is a key epigenetic mechanism that is suggested to be associated with blood lipid levels
We aimed to investigate the association between blood DNA methylation levels and blood levels of triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and total cholesterol in of 725 participants of the Rotterdam Study, a population-based cohort study
Additional analyses Since lipid levels might be affected by dietary fat intake, we explored whether intake of total fat, poly-unsaturated fatty acids (PUFA), mono-unsaturated fatty acids (MUFA), and saturated fatty acids (SFA) were associated with DNA methylation of significantly replicated CpG sites, using linear regression models
Summary
DNA methylation is a key epigenetic mechanism that is suggested to be associated with blood lipid levels. Gene expression levels are regulated by DNA methylation, which is one of the most studied mechanisms in the field of epigenetics and may have an effect on lipid levels [2]. A few studies using candidate gene approaches have reported that DNA methylation at several loci, such as APOE and ABCA1, are associated with lipid levels [4, 5]. Epigenome-wide association studies (EWAS) have recently become available, providing the possibility to identify associations between blood lipid levels and DNA methylation at novel loci [3]. As DNA methylation may vary across different states of health, further
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have