Abstract

Limited CAR T-cell expansion and persistence hinder therapeutic responses in solid cancer patients. To enhance the functional persistence of engineered T-cell therapies, we performed genetic disruption in human CAR T cells of SUV39H1, a histone 3 lysine 9 methyltransferase that promotes heterochromatin formation. This resulted in phenotypic CAR-T reprogramming that elicited optimal and sustained antitumor functionality. Single-cell transcriptomic (scRNA-seq) and chromatin accessibility (scATAC-seq) analyses of tumor-infiltrating CAR T cells showed early reprogramming into self-renewing, stem-like populations with decreased expression of dysfunction genes in all subpopulations. Moreover, we provided evidence that SUV39H1 inactivation elicits potent and durable functional persistence upon multiple tumor rechallenges. This opens a safe path to enhancing adoptive cell therapies for solid tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.