Abstract
Histone methylation is implicated in both gene activation and repression, depending on the specific lysine residue that gets methylated. Recent years have witnessed an explosive expansion of the list of remarkably site-specific histone methyltransferases and demethylases, which greatly facilitates the study on the biological functions of histone methylation in gene expression and cell differentiation in mammalian cells. Adipogenesis represents an excellent model system to understand transcriptional and epigenetic regulation of gene expression and cell differentiation. While transcriptional regulation of adipogenesis has been extensively studied, the roles of epigenetic mechanisms in particular histone methylation in regulation of adipogenesis have just begun to be understood. This review will summarize the recent progress on epigenetic regulation of adipogenesis by histone methylation, with a focus on histone H3K4 and H3K27. The available evidence suggests that site-specific histone methylations play critical roles in adipogenesis and control the expression of both positive and negative master regulators of adipogenesis. This article is part of a Special Issue entitled: Chromatin in time and space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.