Abstract

Immune recognition of pathogen-associated molecular patterns or effectors leads to defense activation at the pathogen challenged sites. This is followed by systemic defense activation at distant non-challenged sites, termed systemic acquired resistance (SAR). These inducible defenses are accompanied by extensive transcriptional reprogramming of defense-related genes. SAR is associated with priming, in which a subset of these genes is kept at a poised state to facilitate subsequent transcriptional regulation. Transgenerational inheritance of defense-related priming in plants indicates the stability of such primed states. Recent studies have revealed the importance and dynamic engagement of epigenetic mechanisms, such as DNA methylation and histone modifications that are closely linked to chromatin reconfiguration, in plant adaptation to different biotic stresses. Herein we review current knowledge regarding the biological significance and underlying mechanisms of epigenetic control for immune responses in plants. We also argue for the importance of host transposable elements as critical regulators of interactions in the evolutionary “arms race” between plants and pathogens.

Highlights

  • Epigenetic Control of Defense Signaling and Priming in PlantsEdited by: Heribert Hirt, King Abdullah University of Science and Technology, Saudi Arabia

  • Plants have evolved sophisticated mechanisms to adapt to fluctuating environments, including immune systems for dealing with diverse infectious microbes that threaten plant growth and survival

  • It should be noted that our review focuses on DNA methylation, TE control and histone modification in the contexts of defense-related gene expression, NLR receptor expression and SAR/priming, respectively, do not indicate restriction of these epigenetic controls to the corresponding aspects of plant immunity. These and other epigenetic mechanisms may play a role in fine control of different steps in plant immunity, and thereby contribute to its multilayered structure

Read more

Summary

Epigenetic Control of Defense Signaling and Priming in Plants

Edited by: Heribert Hirt, King Abdullah University of Science and Technology, Saudi Arabia. Reviewed by: Daniel Hofius, Swedish University of Agricultural Sciences, Sweden Serena Varotto, University of Padua, Italy. Immune recognition of pathogen-associated molecular patterns or effectors leads to defense activation at the pathogen challenged sites. This is followed by systemic defense activation at distant non-challenged sites, termed systemic acquired resistance (SAR). These inducible defenses are accompanied by extensive transcriptional reprogramming of defense-related genes. SAR is associated with priming, in which a subset of these genes is kept at a poised state to facilitate subsequent transcriptional regulation. We review current knowledge regarding the biological significance and underlying mechanisms of epigenetic control for immune responses in plants.

INTRODUCTION
COMPONENTS OF THE PLANT INNATE IMMUNE SYSTEM
HISTONE MODIFICATION AND ITS ROLE IN SYSTEMIC ACQUIRED RESISTANCE
SUMMARY AND FUTURE PERSPECTIVES
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.