Abstract
The last decade has seen remarkable progress in the characterization of methylation clocks that can serve as indicators of biological age in humans and many other mammalian species. While the biological processes of aging that underlie these clocks have remained unclear, several clues have pointed to a link to developmental mechanisms. These include the presence in the vicinity of clock CpG sites of genes that specify development, including those of the Hox (homeobox) and polycomb classes. Here we discuss how recent advances in programmatic theories of aging provide a framework within which methylation clocks can be understood as part of a developmental process of aging. This includes how such clocks evolve, how developmental mechanisms cause aging, and how they give rise to late-life disease. The combination of ideas from evolutionary biology, biogerontology and developmental biology open a path to a new discipline, that of developmental gerontology (devo-gero). Drawing on the properties of methylation clocks, we offer several new hypotheses that exemplify devo-gero thinking. We suggest that polycomb controls a trade-off between earlier developmental fidelity and later developmental plasticity. We also propose the existence of an evolutionarily-conserved developmental sequence spanning ontogenesis, adult development and aging, that both constrains and determines the evolution of aging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.