Abstract

Liver cancer is one of the most common types of cancer among human malignancies. Four and a half LIM domains 1 (FHL1), as a tumor suppressor gene, is frequently downregulated in multiple types of human cancer. However, the role and specific mechanisms of FHL1 as a tumor suppressor in liver cancer are poorly understood. The present study aimed to investigate the role and associated mechanisms of FHL1 in human liver cancer. The level of FHL1 mRNA in hepatocellular carcinoma (HCC) tissue specimens and cell lines derived from the human liver was determined using reverse transcription polymerase chain reaction and western blot analysis. The association between FHL1 expression and clinicopathological characteristics of patients with liver cancer was analyzed. Western blotting, small interfering RNA (siRNA) and chromatin immunoprecipitation were used to study the expression association of FHL1 and enhancer of zeste homolog 2 (EZH2) in human liver cancer and to explore the regulatory mechanism of FHL1 downregulation. Colony formation and migration assays were performed while FHL1 was overexpressed in Hep3B cells. The results showed that the expression of FHL1 mRNA in tumor tissue decreased, exhibiting a significant difference compared with the adjacent non-cancerous tissue (P<0.05). However, the downregulation of FHL1 was not significantly associated with the sex, age, hepatitis B virus infection status, tumor size, distant metastasis status or level of tumor differentiation of the patients. FHL1 was synergistically silenced by DNA methylation and histone modification, and 3-deanzaneplanocin A (DZNep), an inhibitor of EZH2, which is a histone methyltransferase of the polycomb repressive complex 2, which catalyzes histone H3 lysine 27 tri-methylation (H3K27me3). A significant association between FHL1 and EZH2 expression was identified in the female hepatocellular carcinoma (HCC) samples, but was not in the male HCC samples. FHL1 overexpression and DZNep treatment significantly suppressed the growth and migration of Hep3B cells by restoring FHL1 expression. H3K27me3 was significantly enriched at the FHL1 promoter region, as indicated by a chromatin immunoprecipitation assay, and associated with the epigenetic repression of the FHL1 tumor suppressor gene in HCC cell lines. In conclusion, the present study provides an insight into DNA methylation and EZH2-H3K27me3 epigenetic repression of FHL1 in human liver cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.