Abstract
Liver cancer is of the devastating human cancers and its incidence is increasing at an alarming rate. The clinical outcomes are far from descent due to lack of efficient therapeutic targets and chemotherapeutic agents. Studies have revealed the therapeutic implications of microRNAs in the management of different human cancers. This study was designed to explore the role and therapeutic potential of miR-638 in liver cancer via modulation of zeste homolog 2 (EZH2). The results revealed significant (P < 0.05) downregulation of miR-638 in human liver cancer tissues and cell lines. Overexpression of miR-638 led to a significant (P < 0.05) decline in liver cancer cell proliferation. Nonetheless, inhibition of miR-638 could promote the proliferation of the human liver cancer cells. The DAPI and annexin V/PI staining assays revealed that miR-638 induces apoptosis in human liver cancer cells which was accompanied by enhancement of Bax and depletion of Bcl-2 expression. Furthermore, miR-638 overexpression also leads to a significant (P < 0.05) increase of autophagosomes and autolysosomes in liver cancer cells suggestive of autophagy. The induction of autophagy was further confirmed by increase and decrease in expression of LC3B-II and Beclin-1 proteins, respectively. In contrary, inhibition of miR-638 prevented both apoptosis and autophagy of the liver cancer cells. In silico analysis and the dual luciferase assay revealed EZH2 as the molecular target of miR-638 at post-transcriptional level. The qRT-PCR showed that EZH2 to be significantly (P < 0.05) upregulated in the human liver cancer tissues and cell lines. However, the expression of EZH2 was considerably suppressed upon miR-638 overexpression in SNU-423 cells. Taken together, these findings suggest the tumor-suppressive role of miR-638/EZH2 axis liver cancer and point towards the potential of miR-638 as therapeutic target in the treatment of liver cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.