Abstract

Background(−)-Epigallocatechin gallate (EGCG) is a major polyphenol component of green tea that has antioxidant activities. Lipopolysaccharide (LPS) induces inflammatory cytokine production and impairs blood–brain barrier (BBB) integrity. We examined the effect of EGCG on LPS-induced expression of the inflammatory cytokines in human cerebral microvascular endothelial cells (hCMECs) and BBB permeability.MethodsThe expression of TNF-α, IL-1β and monocyte chemotactic protein-1 (MCP-1/CCL2) was determined by quantitative real time PCR (qRT-PCR) and ELISA. Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule (VCAM) in hCMECs were examined by qRT-PCR and Western blotting. Monocytes that adhered to LPS-stimulated endothelial cells were measured by monocyte adhesion assay. Tight junctional factors were detected by qRT-PCR (Claudin 5 and Occludin) and immunofluorescence staining (Claudin 5 and ZO-1). The permeability of the hCMEC monolayer was determined by fluorescence spectrophotometry of transmembrane fluorescin and transendothelial electrical resistance (TEER). NF-kB activation was measured by luciferase assay.ResultsEGCG significantly suppressed the LPS-induced expression of IL-1β and TNF-α in hCMECs. EGCG also inhibited the expression of MCP-1/CCL2, VCAM-1 and ICAM-1. Functional analysis showed that EGCG induced the expression of tight junction proteins (Occludin and Claudin-5) in hCMECs. Investigation of the mechanism showed that EGCG had the ability to inhibit LPS-mediated NF-κB activation. In addition, 67-kD laminin receptor was involved in the anti-inflammatory effect of EGCG.ConclusionsOur results demonstrated that LPS induced inflammatory cytokine production in hCMECs, which could be attenuated by EGCG. These data indicate that EGCG has a therapeutic potential for endotoxin-mediated endothelial inflammation.

Highlights

  • The brain endothelial cells interact with resident cells in the central nervous system (CNS), providing the protective blood–brain barrier (BBB) interface between the CNS and peripheral blood system

  • LPS, tumor necrosis factor (TNF)-α, or IL-1β can significantly stimulate human brain microvascular endothelial cells (HBMECs) to release monocyte chemotactic chemotacticprotein-1 (MCP-1/CCL2), an important factor for monocyte migration bound to the apical endothelial surfaces [8]

  • We found that LPS treatment of Human cerebral microvascular endothelial cell (hCMEC)/D3 cells induced the expression of monocyte chemotactic protein (MCP)-1 in both time-dependent (Figure 2A,D) and dose-dependent (Figure 2B,E) fashions

Read more

Summary

Methods

The expression of TNF-α, IL-1β and monocyte chemotactic protein-1 (MCP-1/CCL2) was determined by quantitative real time PCR (qRT-PCR) and ELISA. Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule (VCAM) in hCMECs were examined by qRT-PCR and Western blotting. Monocytes that adhered to LPS-stimulated endothelial cells were measured by monocyte adhesion assay. Tight junctional factors were detected by qRT-PCR (Claudin 5 and Occludin) and immunofluorescence staining (Claudin 5 and ZO-1). The permeability of the hCMEC monolayer was determined by fluorescence spectrophotometry of transmembrane fluorescin and transendothelial electrical resistance (TEER). NF-kB activation was measured by luciferase assay

Results
Background
Discussion
Marshall JC
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call