Abstract

Because of its constant renewal and high propensity for repair, the epidermis is, together with the gut and the hematopoietic system, a tissue of choice to explore stem cell biology. Previous research over many years has revealed the complexity of the epidermis: the heterogeneity of the stem cell compartment, with its rare, slowly cycling, multipotent, hair-follicle, "bulge" stem cells and the more restricted interfollicular, follicle-matrix, and sebaceous-gland stem cells, which in turn generate the large pool of transit-amplifying progeny. Stem cell activity has been used for some considerable time to repair skin injuries, but ex-vivo keratinocyte amplification has its limitations, and grafted skin homeostasis is not totally satisfactory. Human embryonic stem cells raise the hope that the understanding of the developmental steps leading to the generation of epidermal stem cells and the characterization of the key signaling pathways involved in skin morphogenesis (such as p63) will be translated into therapeutic benefit. Our recent results suggest the feasibility not only of identifying but also of amplifying human ES cells, early ectodermal progenitors with an intact multipotent potential that might improve the quality and functionality of grafts, provided that preclinical in vivo studies confirm our expectations from in vitro analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call