Abstract

Tight junctions (TJs) serve an important role in maintaining the integrity of the blood-brain barrier (BBB), while neurological disorders, including ischemic stroke, induce TJ disruption and increase BBB permeability; results include edema formation and hemorrhage transformation. Cerebral endothelium protection presents a promising approach in ischemic stroke therapy. In the current study, protective effects of the epidermal growth factor (EGF) on ischemia-induced disruption of BBB integrity were examined using an oxygen-glucose deprivation (OGD) model in bEnd3 cells. Expression levels of claudin-5 and TJ protein-1 (ZO-1) were determined by reverse transcription-quantitative polymerase chain reaction and western blot analysis. Cell viability was evaluated by cell counting kit-8 assay and the endothelial permeability of Lucifer yellow (LY) was assessed using Transwell assays. The results revealed that post-ischemia administration of EGF (250 ng/ml) significantly attenuated the decrease in mRNA (P<0.05) and protein (P<0.01) expression levels of claudin-5 and ZO-1, and the increase in endothelial permeability of LY (P<0.05) induced by 4 h OGD exposure followed by 24 h reoxygenation. In addition, EGF did not significant affect cell viability. The current study suggested a potential of EGF to improve BBB integrity against ischemic injury by upregulating the expression of TJ proteins and reducing endothelial permeability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call