Abstract

Epithelial-mesenchymal transition (EMT) is a step in the process through which colorectal cancer cells metastasize by gaining the cellular mobility associated with mesenchymal cells. However, whether the EMT occurs in cells tightly bound to each other remains largely unknown. In this study, we examined the dual influence of intercellular contact and epidermal growth factor (EGF) signaling on the induction of EMT in SW480 human colon carcinoma cells. Stimulation of densely cultured SW480 cells with EGF initiated partial EMT, following which E-cadherin levels were reduced. In these cells, the transcriptional repression of E-cadherin was caused by ZEB1 binding to its promoter region. EGF signaling did not directly induce ZEB1 mRNA upregulation but contributed to ZEB1 protein stability by regulating proteasomal degradation. Our findings indicate that EGF can induce EMT in colorectal cancer cells in the presence of cell-cell contact and may be a potential therapeutic target for metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.