Abstract

When H2O-exchanged, lyophilized mouse epidermal growth factor (mEGF) is dissolved in deuterium oxide at low pH (i.e., below approximately 6.0), 13 well-resolved, amide proton resonances are observed in the downfield region of an NMR spectrum (500 MHz). Under the conditions of these experiments, the lifetimes of these amide protons in exchange for deuterons of the deuterium oxide solvent suggest that these amide protons are hydrogen-bonded, backbone amide protons. Several of these amide proton resonances show splittings (i.e., JNH alpha-CH) of approximately 8-10 Hz, indicating that their associated amide protons are in some type of beta-structure. Selective nuclear Overhauser effect (NOE) experiments performed on all amide proton resonances strongly suggest that all 13 of these backbone amide protons are part of a single-tiered beta-sheet structural domain in mEGF. Correlation of 2D NMR correlated spectroscopy data, identifying scaler coupled protons, with NOE data, identifying protons close to the irradiated amide protons, allows tentative assignment of some resonances in the NOE difference spectra to specific amino acid residues. These data allow a partial structural model of the tiered beta-sheet domain in mEGF to be postulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.