Abstract
While a common trend in disease modeling is to develop models of increasing complexity, it was recently pointed out that outbreaks appear remarkably simple when viewed in the incidence vs. cumulative cases (ICC) plane. This article details the theory behind this phenomenon by analyzing the stochastic SIR (Susceptible, Infected, Recovered) model in the cumulative cases domain. We prove that the Markov chain associated with this model reduces, in the ICC plane, to a pure birth chain for the cumulative number of cases, whose limit leads to an independent increments Gaussian process that fluctuates about a deterministic ICC curve. We calculate the associated variance and quantify the additional variability due to estimating incidence over a finite period of time. We also illustrate the universality brought forth by the ICC concept on real-world data for Influenza A and for the COVID-19 outbreak in Arizona.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.