Abstract

We present an epi-detected quadruple-modal nonlinear optical microscopic imaging technique (i.e., coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), third-harmonic generation (THG), and two-photon excited fluorescence (TPEF)) based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of the tooth. We demonstrate that high contrast ps-CARS images covering both the fingerprint (500–1800 cm−1) and high-wavenumber (2500–3800 cm−1) regions can be acquired to uncover the distributions of mineral and organic biomaterials in the tooth, while high quality TPEF, SHG, and THG images of the tooth can also be acquired under ps laser excitation without damaging the samples. The quadruple-modal nonlinear microscopic images (CARS/SHG/THG/TPEF) acquired provide better understanding of morphological structures and biochemical/biomolecular distributions in the dentin, enamel, and the dentin-enamel junction of the tooth without labeling, facilitating optical diagnosis and characterization of the tooth in dentistry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.