Abstract

The ephrin-Eph ligand receptor pair is known to control the repulsion/adhesion process in different tissues, including the immune system. Herein, we evaluated the role of EphB2 receptors in T cell progenitor migration during in vitro thymus colonization and to ECM or chemokine stimuli. EphB2 and their ligands, ephrin-B1 and ephrin-B2, are expressed in BM-derived progenitors, and EphB2(-/-) cells had diminished thymus colonization capacity. Conversely, EphB2(LacZ) cells, which maintain a preserved ephrin-binding domain, were capable of colonizing WT thymuses similarly to WT progenitors, highlighting the importance of reverse signals transmitted to normal fetal thymus. However, the EphB2 receptor expressed by microenvironmental cells also drives progenitor immigration, as recolonization of EphB2-deficient fetal thymuses was compromised profoundly. Additionally, we observed lower depositions of ECM and chemokines on EphB2-deficient thymuses but no changes in their receptor expression on BM-derived progenitors and developing thymocytes. Migration of EphB2-deficient progenitors and thymocytes was also reduced through ECM or chemokine stimuli. Furthermore, ephrin-B1 costimulation also inhibited haptotaxis and chemotaxis of WT but not EphB2(LacZ) cells, demonstrating the specific involvement of EphB2 signaling on T cell progenitor migration. Our data suggest the relevance of a nonactivated EphB2 for regulating T cell progenitor migration and its modulation upon ephrin-B engagement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.