Abstract

Fine-grained classification of historical traditional villages plays a crucial role in guiding the future development and construction of urban and rural areas. This study aims to propose a new dataset for fine-grained classification of traditional villages and to propose an efficient progressive attention network for the problem of low accuracy and efficiency of fine-grained traditional historical village classification. Firstly, in order to further study the long-standing problem of fine-grained classification of traditional villages, a new fine-grained classification dataset of traditional villages containing 4,400 images, referred to as PVCD, is proposed by crawling and hand-arranging. Secondly, a new Progressive Attention Module, abbreviated as PAM, is also proposed. PAM engages in attentional modeling of prominent spatial features within the spatial dimension, subsequently applying attentional modeling to channel features beneath the identified salient spatial features. This process involves salient spatial feature attention modeling of prominent channel features within the dimension to extract discriminative information for fine-grained classification, thereby enhancing the performance of classifying traditional villages with precision. Finally, a new knowledge distillation strategy of softened alignment distillation, or SAD for short, is proposed, which simply and efficiently transfers the knowledge of softened category probability distributions through. Notably, based on the above proposed PAM, the lightweight EPANet-Student and the heavyweight EPANet-Teacher are proposed. In addition, the heavyweight EPANet-Teacher transfers the knowledge of fine-grained categorization of traditional villages to the lightweight EPANet-Student through the proposed SAD, abbreviated as EPANet-KD. The experimental results show that the proposed EPANet-Teacher achieves state-of-the-art performance with an accuracy of 67.27%, and the proposed EPANet-KD achieves comparable performance to the proposed EPANet-Teacher with 3.32M parameters and 0.42G computation. The proposed EPANet-KD maintains a good balance of accuracy and efficiency in the fine-grained classification of traditional villages, considerably promoting the research on the fine-grained classification of traditional villages. In addition, it facilitates the digital preservation and development of traditional villages. All datasets, codes and benchmarking results are publicly available for the promotion of this research area. https://github.com/Jack13026212687/EPANet-KD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call