Abstract
AimsExchange protein directly activated by cAMP 1 (EPAC1), a major isoform of guanine nucleotide exchange factors, is highly expressed in vascular endothelia cells and regulates angiogenesis in the retina. High intratumor microvascular densities (MVD) resulting from angiogenesis is responsible for breast cancer development. Downregulation of EPAC1 in tumor cell reduces triple-negative breast cancer (TNBC)-induced angiogenesis. However, whether Epac1 expressed in vascular endothelial cells contributes to angiogenesis and tumor development of TNBC remains elusive. Main methodsWe employed NY0123, a previously identified potent EPAC inhibitor, to explore the anti-angiogenic biological role of EPAC1 in vitro and in vivo through vascular endothelial cells, rat aortic ring, Matrigel plug, and chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) assays, as well as the in vivo xenograft tumor models of TNBC in both chick embryo and mice. Key findingsInhibiting EPAC1 in vascular endothelial cells by NY0123 significantly suppresses angiogenesis and tumor growth of TNBC. In addition, NY0123 possesses a better inhibitory efficacy than ESI-09, a reported specific EPAC inhibitor tool compound. Importantly, inhibiting EPAC1 in vascular endothelia cells regulates the typical angiogenic signaling network, which is associated with not only vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor-2 (VEGFR2) signaling, but also PI3K/AKT, MEK/ERK and Notch pathway. ConclusionsOur findings support that EPAC1 may serve as an effective anti-angiogenic therapeutic target of TNBC, and EPAC inhibitor NY0123 has the therapeutic potential to be developed for the treatment of TNBC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have