Abstract
Peptide self-assembly is gathering much attention due to the precise control it provides for the arrangement of functional moieties for the fabrication of advanced functional materials. It is desirable to use a physical, chemical, or biological trigger that can control the self-assembly process. In the current article, we have applied an enzyme to induce the peptide self-assembly of an aromatic peptide amphiphile, which modulates the supramolecular order in the final gel phase material. We accessed diverse peptide hydrogels from identical gelator concentrations by simply changing the enzyme concentration, which controlled the reaction kinetics and influenced the dynamics of self-assembly. Depending upon the concentration of the enzyme, a bell-shaped relationship was observed in terms of intermolecular interactions, morphology, and properties of the final gel phase material. The access of non-equilibrium structures was further demonstrated by fluorescence emission spectroscopy, circular dichroism spectroscopy, atomic force microscopy, transmission electron microscopy, and rheology. This strategy is applied to construct a charge-transfer hydrogel by doping the donor hydrogel with an acceptor moiety, which exhibits efficient energy transfer. Interestingly, such structural control at the nanoscopic level can further tune the energy-transfer efficiency by simply modulating the enzyme concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.