Abstract

Peptide self-assembly provides a useful approach to control the organization of functional molecular components, as relevant to future opto-electronic or photonic nanostructures. In this article, we report on the discovery of efficient energy transfer nanostructures using a dynamic combinatorial library (DCL) approach driven by molecular self-assembly, demonstrating an enhanced self-selection and amplification of effective energy transfer nanostructures from complex mixtures of dipeptide derivatives. By taking advantage of an enzyme-catalysed fully reversible amide formation reaction, we show how gelation shifts the equilibrium in favour of the formation of short aromatic dipeptide derivatives in the DCL system, as confirmed by reversed-phase high pressure liquid chromatography (HPLC), fluorescence emission spectroscopy, atomic force microscopy (AFM), transmission force microscopy (TEM) and circular dichroism (CD) spectroscopy. This approach enabled us to identify a two-component donor–acceptor hydrogel, which forms within minutes and exhibits efficient energy transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.