Abstract

Injectable hydrogel scaffolds combined with stem cell therapy represent a promising approach for minimally invasive surgical tissue repair. In this study, we developed and characterized a fully synthetic, biodegradable poly(N5-(2-hydroxyethyl)-l-glutamine)-based injectable hydrogel modified with integrin-binding arginine-glycine-aspartic acid (RGD) peptide (PHEG-Tyr-RGD). The biodegradable hydroxyphenyl polymer precursor derivative of PHEG-Tyr was enzymatically cross-linked to obtain injectable hydrogels with different physicochemical properties. The gelation time, gel yield, swelling behavior, and storage modulus of the PHEG-Tyr hydrogels were tuned by varying the concentrations of the PHEG-Tyr precursors and horseradish peroxidase as well as the nH2O2/nTyr ratio. The mechanical properties and gelation time of the PHEG-Tyr hydrogel were optimized for the encapsulation of rat mesenchymal stem cells (rMSCs). We focused on the 2D and 3D spreading and viability of rMSCs within the PHEG-Tyr-RGD hydrogels with different physicochemical microenvironments in vitro. Encapsulation of rMSCs shows long-term survival and exhibits cell-matrix and cell-cell interactions reflective of both the RGD concentration and hydrogel stiffness. The presented biomaterial represents a suitable biological microenvironment to guide 3D spreading and may act as a promising 3D artificial extracellular matrix for stem cell therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.