Abstract

A beta-1,3-glucanase (EC 3.2.1.6) with a molecular mass of 33 kDa was isolated from the digestive fluid of the Pacific abalone Haliotis discus hannai by ammonium sulfate fractionation followed by conventional column chromatography. This enzyme, named HdLam33 in the present study, degraded laminarin and laminarioligosaccharides to laminaribiose and glucose with the optimal temperature and pH at 50 degrees C and 6.0, respectively. HdLam33 possessed transglycosylation activity, a characteristic property of glucan hydrolases that split glycoside linkage with a retaining manner. By the transglycosylation reaction of HdLam33, the laminaribiose unit in the non-reducing terminus of laminaritriose (donor substrate) was transferred to a free laminaribiose (acceptor substrate) resulting to laminaritetraose and glucose. The resulting laminaritetraose was subsequently hydrolyzed by HdLam33 into 2 mol of glucose and 1 mol of laminaribiose. The primary structure of HdLam33 was analyzed by the cDNA method. The deduced amino-acid sequence of 329 residues corresponding to the catalytic domain of HdLam33 showed 56-61% amino-acid identity with those of other molluscan beta-1,3-glucanases which have been identified as glycoside hydrolase family 16 enzymes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call