Abstract

(S)-(+)-2,2-Dimethylcyclopropane carboxylic acid [(S)-(+)-DMCPA] is a key chiral intermediate for production of Cilastatin, an excellent renal dehydropeptidase-I inhibitor. In this study, a new method for preparation of (S)-(+)-DMCPA with microbial esterases was investigated. A microbial screening program obtained six esterase-producing isolates that could display relatively high activities and enantioselectivities using racemic ethyl 2,2-dimethylcyclopropane carboxylate (DMCPE) as screening substrate, aiming at forming optically pure (S)-(+)-DMCPA. Further selection was carried out with substrates having different alcohol moieties, including methyl, ethyl, and 2-chloroethyl esters. Finally, one of these strains, numbered ECU1013, with high enantioselectivity toward the hydrolytic resolution of methyl 2,2-dimethylcyclopropane carboxylate (DMCPM), afforded the (S)-product in 92% ee, and was later identified as Rhodococcus sp. According to our research, there were several active esterases to DMCPM in cells of Rhodococcus sp. ECU1013; however, (S)-preferential esterase was selectively enriched based on the time-dependent profile of esterases biosynthesis, thereby the enantiomeric excess of biotransformation product (ee p) was constantly increased, finally maintained at 95% (S). To improve the yield, various organic solvents were employed for better dispersion of the hydrophobic substrate. As a result, (±)-DMCPM of up to 400mM in the organic phase of isooctane was enantioselectively hydrolyzed into (S)-(+)-DMCPA, with an isolation yield of 38% and a further increase of ee p to 99%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call