Abstract

In this study, an amidohydrolase activity of amidase in whole cells of Rhodococcus sp. MTB5 has been used for the biotransformation of aromatic, monoheterocyclic and diheterocyclic amides to corresponding carboxylic acids. Benzoic acid, nicotinic acid and pyrazinoic acid are carboxylic acids which have wide industrial applications. The amidase of this strain is found to be inducible in nature. The biocatalytic conditions for amidase present in the whole cells of MTB5 were optimized against benzamide. The enzyme exhibited optimum activity in 50 mM potassium phosphate buffer pH 7.0. The optimum temperature and substrate concentrations for this enzyme were 50 °C and 50 mM, respectively. The enzyme was quite stable for more than 6 h at 30 °C. It showed substrate specificity against different amides, including aliphatic, aromatic and heterocyclic amides. Under optimized reaction conditions, the amidase is capable of converting 50 mM each of benzamide, nicotinamide and pyrazinamide to corresponding acids within 100, 160 and 120 min, respectively, using 5 mg dry cell mass (DCM) per mL of reaction mixture. The respective percent conversion of these amides was 95.02%, 98.00% and 98.44% achieved by whole cells. The amidase in whole cells can withstand as high as 383 mM concentration of product in a reaction mixture and above which it undergoes product feedback inhibition. The results of this study suggest that Rhodococcus sp. MTB5 amidase has the potential for large-scale production of carboxylic acids of industrial value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call