Abstract

An integrated biorefinery process is proposed here for the enzymatic production of cellulose nanofiber (CNF) and sugars in a stirred-tank reactor using eucalyptus cellulose pulp as feedstock. Process engineering variables required for scale-up such as impeller speed, power consumption, and rheological behavior were determined under different experimental conditions of solids loading (10 and 15% w/v) and enzyme dosage (5 and 10 mg/g). Based on the mixing time, an impeller speed rotation of 470 rpm was selected for provision of adequate homogenization of the medium. Total energy consumption ranged from 161 to 207 W h and showed that significantly lower power consumption could be achieved using 10 mg/g enzyme loading with 10% w/v solids. Evaluation of rheological behavior showed that transition to a turbulent flow regime during the enzymatic hydrolysis reaction resulted in a constant power number ranging from 2.06 to 2.51, which was also lower for 10 mg/g enzyme loading with 10% w/v solids. Integrated analysis of glucose released and CNF generated after enzymatic hydrolysis showed that glucose values varied from 42.0 to 90.6 g/L, corresponding to cellulose conversion ranging from 57.2 to 76.4%. These values are suitable for the microbial fermentation of sugars into biofuels, while leaving a useful amount of residual nanomaterial. The residual solids of the enzymatic reactions presented the characteristics of CNF, as shown by X-ray diffraction (XRD) analyses, with crystallinity index (CI) values of 72–81%, as well as by morphological analysis using field emission scanning electron microscopy (FEG-SEM), which revealed diameters in the range 18–31 nm, making this nanomaterial suitable for use in a wide range of industrial applications. The findings indicated the potential of using conventional stirred-tank reactors for enzymatic hydrolysis for the integrated production of CNF and glucose, hence contributing to the implementation of future large-scale biorefineries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call