Abstract
This work aims at realizing an optimal hydrolysis of pretreated Alfa fibers (Stipa tenacissima) through the use of enzymes produced from Talaromyces thermophilus AX4, namely β-d-glucosidase and xylanase, by a solid state fermentation process of an agro-industrial waste (wheat bran supplemented with lactose). The carbon source was firstly selected and the optimal values of three other parameters were determined: substrate loading (10g), moisture content (85%) and production time (10days); which led to an optimized enzymatic juice. The outcome was then supplemented with cellulases of T. reesei and used to optimize the enzymatic saccharification of alkali-pretreated Alfa fibers (PAF). The maximum saccharification yield of 83.23% was achieved under optimized conditions (substrate concentration 3.7% (w/v), time 144h and enzyme loading of 0.8 FPU, 15U CMCase, 60U β-d-glucosidase and 125U xylanase).The structural modification of PAF due to enzymatic saccharification was supported by the changes of morphologic and chemical composition observed through macroscopic representation, FTIR and X-Ray analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have