Abstract

The kinetics of esterification of exogenous retinol by cell membranes prepared from the crude homogenate of the frog retinal pigment epithelium was studied. The formation of retinyl palmitate from added retinol was directly assayed by high performance liquid chromatography (HPLC). A linear relationship was observed between the amount of protein (up to 2 mg) in the incubation medium and the amount of retinyl palmitate formed. At room temperature, this reaction took less than 2 hours to complete. By varying the substrate concentration in the incubation medium, the reciprocal of initial velocity of the reaction (nmol retinyl palmitate formed per hour) was plotted against the reciprocal of substrate concentration (nmol of retinol). This double-reciprocal plot shows that the apparent Km of the reaction was 10 microM with an apparent Vmax of 9.1 nmol of retinyl palmitate per hour per mg protein. When this assay was repeated in the presence of 3,4-didehydroretinol (20 microM), the kinetics of the reaction showed the pattern of that of a competitive inhibitor, suggesting that 3,4-didehydroretinol competes with retinol for the same active site for esterification. The esterification of 3,4-didehydroretinol resulted in the formation of 3,4-didehydroretinyl palmitate, which was also measured by HPLC. The amount of 3,4-didehydroretinyl palmitate formed by this reaction decreased in proportion to increased retinol concentration in the incubation mixture. This further confirms that a competition exists between the esterification of retinol and 3,4-didehydroretinol by retinal pigment epithelium of the frog.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.