Abstract
The purpose of this study is to investigate the enzymatic degradation behaviors of porous poly(lactide-co-glycolide) (PLGA) foams in the presence of trypsin, in comparison with their hydrolytic degradation. To inspect the effect of trypsin on the degradation of PLGA, both the hydrolytic and enzymatic degradation of non-porous PLGA samples were also performed. The changes of molecular weight and molecular weight distribution (polydispersity) during the degradation were determined by gel permeation chromatograph. And the changes of weight, thickness and morphology with the degradation were also measured. The degradation of PLGA displayed as two stages. In the first stage, the molecular weight of PLGA decreased continuously with degradation time, whereas little weight loss occurred. But in the second stage, the molecular weight of PLGA had decreased to a low value and was almost unchanged with time, while the sample experienced significant weight loss. And it was found that the presence of trypsin could significantly accelerate the weight loss rates of all the PLGA samples, but it caused little difference in the decrease of molecular weight and the change of PLGA composition between the enzymatic and hydrolytic degradation. Therefore, the enzymatic degradation of PLGA was still primarily a hydrolysis process. A mechanism of enzymatic degradation was proposed that the trypsin could enhance the weight loss of PLGA by acting as surfactant to push the dispersion of degradation products into water even though they could not dissolve in water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.