Abstract
Dedicated to the 100th anniversary of the birth of Academician A M Prokhorov, this paper reviews the physics of self-sustained volume discharge without preionization—self-initiated volume discharge (SIVD)—in the working mixtures of non-chain hydrofluoride HF (deuterofluoride (DF)) lasers. The dynamics of SIVD in discharge gaps with different geometries is thoroughly described. The mechanisms for the restriction of current density in a diffuse channel in electric discharges in SF6 and SF6 based mixtures (which determines whether SIVD is possible) are proposed and analyzed using simple models. The most probable mechanisms are the electron impact dissociation of SF6 and other mixture components, electron–ion recombination and electron attachment to vibrationally excited SF6 molecules. Starting from a comparative analysis of the rate coefficients of these processes, it is shown that electron–ion recombination is capable of compensating for electron detachment from negative ions via electron impact. It is also established that SIVD is not only observed in SF6, but also in other strongly electronegative gases. The factors that determine the uniformity of the active medium in non-chain HF (DF) lasers are analyzed. Some special features of non-chain HF (DF) lasers with different apertures operating are carefully examined. Consideration is given to the problem of increasing the aperture and discharge volume of non-chain HF (DF) lasers. Based on our experimental results, the possibility of increasing the energy of such lasers to ~1 kJ and above is shown.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have