Abstract

Development of polymeric materials capable of self-healing at low temperatures is an important issue since their mechanical strength and self-healing performance are often in conflict with each other. Herein, random copolymers with self-healing capability in a wide temperature range prepared from 2-(dimethylamino)ethyl methacrylate (DMAEMA), glyceryl monomethacrylate (GlyMA), and butyl methacrylate monomers via free-radical polymerization and subsequent cross-linking with hexamethylene diisocyanate are reported. Wound closure is facilitated by swelling below the lower critical solution temperature or by heating above the glass transition temperature (T g ) of the polymer. GlyMA units form metal-ligand coordination complexes with dibutyltin dilaurate, leading to the formation of new carbonate bonds under ambient CO2 and H2 O conditions. Although swelling/heating reduces the polymer's mechanical strength, it is fully restored following chemical re-bonding/drying at room temperature. The swelling and degree of scratch healing are affected by pH, temperature, and the DMAEMA content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call