Abstract

The Great Himalayan National Park (GHNP), located in western Himalaya, is a key mountainous ecosystem prone to environmental vulnerability because of anthropogenic stress and the natural disasters, viz., landslide and forest fire. We assessed the environmental vulnerability of the eco-development zone of GHNP using remote sensing (RS) and geographic information system (GIS) technologies. To quantify the environmental vulnerability, a numerical model using spatial principal component analysis (SPCA) was developed. This model considered five factors: land use/land cover, forest canopy density, forest fire risk, landslide susceptibility and human population density. The environmental vulnerability integrated index (EVSI) calculated for the 1990, 2000 and 2010 periods was found to be 2.00, 2.72, and 3.40, respectively. The results showed temporal increase in the environmental vulnerability in the zone. Based on the numerical outputs, the vulnerability of the region was categorized into five classes: potential, slight, medium, high, and severe. The primary factor responsible for the increase in vulnerability overtime was land use/land cover change in the study area due to hydro-electric power projects, construction of roads, and other infrastructure developments. Forest fire and decreased forest canopy density are other major contributing factors responsible for the increase in the environmental vulnerability. Our results indicated that integration of RS, GIS and SPCA can effectively quantify and assess environmental vulnerability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.