Abstract
Wastewater-based surveillance is used to track the temporal patterns of the SARS-CoV-2 virus in communities. Viral RNA particle detection in wastewater samples can indicate an outbreak within a catchment area. We describe the feasibility of using a sewage network to monitor SARS-CoV-2 trend and use of genomic sequencing to describe the viral variant abundance in an urban district in Karachi, Pakistan. This was among the first studies from Pakistan to demonstrate the surveillance for SARS-CoV-2 from a semi-formal sewage system. Four sites draining into the Lyari River in District East, Karachi, were identified and included in the current study. Raw sewage samples were collected early morning twice weekly from each site between June 10, 2021 and January 17, 2022, using Bag Mediated Filtration System (BMFS). Secondary concentration of filtered samples was achieved by ultracentrifugation and skim milk flocculation. SARS-CoV-2 RNA concentrations in the samples were estimated using PCR (Qiagen ProMega kits for N1 & N2 genes). A distributed-lag negative binomial regression model within a hierarchical Bayesian framework was used to describe the relationship between wastewater RNA concentration and COVID-19 cases from the catchment area. Genomic sequencing was performed using Illumina iSeq100. Among the 151 raw sewage samples included in the study, 123 samples (81.5%) tested positive for N1 or N2 genes. The average SARS-CoV-2 RNA concentrations in the sewage samples at each lag (1-14 days prior) were associated with the cases reported for the respective days, with a peak association observed on lag day 10 (RR: 1.15; 95% Credible Interval: 1.10-1.21). Genomic sequencing showed that the delta variant dominated till September 2022, while the omicron variant was identified in November2022. Wastewater-based surveillance, together with genomic sequencing provides valuable information for monitoring the community temporal trend of SARS-CoV-2. PATH, Bill & Melinda Gates Foundation, and Global Innovation Fund.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.