Abstract

A tremendous number of landmines has been buried during the last decade. In recent years, various autonomous platforms equipped with ground-penetrating radars (GPRs) have been proposed for the detection of landmines. These systems have already demonstrated their performance in controlled environments with known ground truth. However, it has been observed that the influence of surface conditions in the form of vegetation and roughness as well as soil moisture content significantly reduce the detection probability. The influence of these individual factors on a ground-offset GPR is presented and discussed in this work. Each of these factors significantly degrades the backscattered signal. With increasing soil moisture, the signal gets attenuated more strongly; however, the signature is maintained in the phase of the C-Scans. An increase in surface roughness deteriorates the target pattern making it difficult to detect buried objects unambiguously. Vegetation, especially with irregular leaf structures, can appear as a ghost target and scatter the electromagnetic waves. In most cases, the target is easier to detect in the phase of the B- or C-Scan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call