Abstract

SummaryThe article analyzes and discusses the environmental and natural resource impacts, benefits, and greenhouse gas (GHG) mitigation potential associated with a long‐term transition to more energy‐efficient pyrometallurgical smelting technologies for the production of refined copper. Using generic data from the KGHM Polska Miedź S.A, Glogow I and II smelting facilities in Poland, this study employs life cycle assessment (LCA) to compare the environmental impacts of shaft and flash furnace‐based smelting technologies. Additionally, this analysis accounts for likely technological changes in the more energy‐efficient flash furnace smelting technologies and electricity generation from 2030 to 2050 to forecast the long‐term impacts of copper production. Life cycle impact assessment results for copper production are characterized using the ReCiPe 2008 midpoint method. LCA results show that, for most impact categories, the flash‐based technology can achieve significantly lower environmental impacts than a shaft furnace (i.e., to produce 1 ton of copper in 2010 generates, on average, a 24% lower overall impact). For climate change, transitioning from shaft furnace‐based copper production to more efficient flash furnace technology leads to decreasing GHG emissions of 29% in 2010, 50% in 2030, and 56% in 2050.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.