Abstract
The environment in livestock and poultry houses plays an important role in the growth and reproduction of livestock and poultry. In order to obtain the environmental conditions of livestock and poultry houses in a timely and reliable manner, and eliminate adverse environmental factors, scholars have been exploring various methods to obtain and predict environmental factors. This paper reviewed the literature from the last 10 years, specifically focusing on technologies for detecting environmental factors in livestock and poultry houses, which can be mainly divided into three categories: research on the environmental monitoring and control of livestock and poultry houses based on detection equipment and wireless sensor technology; research on the distribution and regularity of environmental factors in livestock and poultry houses based on a mathematical model; research on the environmental simulation and detection of livestock and poultry houses based on computer technology. The current testing methods have their advantages and disadvantages. When studying environmental factors, researchers should choose the most appropriate method for data acquisition according to the actual situation. The proposed recommendations for achieving this goal are as follows: (1) The control of environmental factors should be combined with the physiological response of livestock and poultry. The needs of animals should be considered; (2) Novel approaches need to be developed to integrate energy requirements into the environmental regulation of livestock and poultry houses; (3) It is necessary to research and develop control models and strategies that can predict the environment in the houses, and the transient simulation method should be further explored; (4) Improve environmental detection and control accuracy through the coupling of different technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.