Abstract

The future of Arctic sea ice algae is examined using a regional ocean and sea ice biogeochemical model, with a simulation from 1980 to 2085, considering a future scenario with strong warming. To analyze the impacts of climate change, we computed key dates in the development of sympagic blooms, corresponding to the occurrence of specific growth conditions, and designed diagnostics of ice algal phenology to estimate the onset and peak of blooms. These diagnostics help understand how the timing of light and nutrient availability governs the growth of ice algae and how environmental controls will be altered by climate change across regions. With thinner ice, photosynthetically active radiation in bottom ice will reach levels sufficient for growth earlier, resulting in a better synchrony of high levels of light and nutrients. Increases in snow cover can potentially offset the effect of thinner ice, leading to shorter periods of favorable growth conditions in certain regions. The loss of sea ice cover before the late 21st century only impacts sympagic blooms at lower latitudes, as the timing of sea ice break-up shows little change relative to other key dates at higher latitudes. In response to climate change, the model simulates a modified spatial distribution of blooms, with the emergence of highly productive areas and the loss of blooms in other regions. However, the changes in the timing of growth conditions do not substantially alter the timing of blooms, and both onset and peak ice algae see little change. The simulated lack of sensitivity of bloom onset is attributed to the delay in sea ice freeze-up projected by the model, causing a reduction of overwintering ice algae. The resulting lower initial biomass at the beginning of spring then causes a delay in the development of blooms, offsetting earlier light from thinner ice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call