Abstract
Blooms of the freshwater stalked diatom Didymosphenia geminata (Lyngb.) M. Schmidt in A. Schmidt typically occur in oligotrophic, unshaded streams and rivers. Observations that proliferations comprise primarily stalk material composed of extracellular polymeric substances (EPS) led us to ask whether or not the production of excessive EPS is favored under nutrient-limited, high-light conditions. We conducted experiments in outdoor flumes colonized by D. geminata using water from the oligotrophic, D. geminata-affected Waitaki River, South Island, New Zealand, to determine the relationship between D. geminata stalk length, cell division rates, and light intensity under ambient and nutrient-enriched conditions. Stalk lengths were measured in situ, and cell division rates were estimated as the frequency of dividing cells (FDC). FDC responded positively to increasing light intensity and to nutrient additions (N+P and P). Under ambient conditions, stalk length increased as light level increased except at low ambient light levels and temperature. Nutrient enrichment resulted in decreased stalk length and negative correlations with FDC, with this effect most evident under high light. Our results are consistent with the hypothesis that extensive stalk production in D. geminata occurs when cell division rates are nutrient limited and light levels are high. Thus, photosynthetically driven EPS production in the form of stalks, under nutrient-limited conditions, may explain the development of very high biomass in this species in oligotrophic rivers. The responses of FDC and stalk length under nutrient-replete conditions are also consistent with occurrences of D. geminata as a nondominant component of mixed periphyton communities in high-nutrient streams.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have