Abstract

Production of pork based on monoculture cereal-based cropping systems causes substantial environmental pressures and feed-food competition. This study evaluated the environmental consequences of five different scenarios involving inclusion of rotational grass-clover leys and incorporation of grass-clover biomass in pig diets: (1) a conventional reference scenario without grass-clover biomass; (2) a conventional scenario with replacement of feed with grass-clover silage in a total mixed ration, i.e., with grass-clover biomass replacing other feed; (3) an organic scenario using grass-clover silage for enrichment purposes only; (4) an organic scenario using grass-clover silage for enrichment purposes and additional grass-clover leys for green manuring; and (5) an organic scenario using grass-clover silage and pasture to replace feed. The functional unit was 1 kg of pork slaughter weight and the system boundary was from cradle to farm gate. We used life cycle assessment, the introductory carbon balance method and human edible feed conversion efficiency to assess the performance of the pig production system. Introducing grass-clover biomass as a total mixed ration in conventional pig diets, reduced the climate impact (-17%), eutrophication (-7.1%), marine eutrophication (-15%), energy use (-13%), and feed-food competition (-20%) per kg of pork meat, while acidification (+2.7%) and land use (+1.5%) were slightly increased compared with the reference. The lower climate impact (without considering soil carbon change) was attributable to reduced fertilizer and diesel needs due to pre-crop effects. Overall, feeding grass-clover biomass decreased several environmental impact categories, feed-food competition and improved cereal-based cropping systems by the introduction of grass-clover leys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.