Abstract

Abstract The aeronautic industry is facing increasing pressure to design more efficient and sustainable aircraft to mitigate their impact on the environment. These solutions are mainly focused on: aerodynamics, structures/materials, propulsion and operations. This paper focuses on the potential of electric propulsion systems in different aircraft segments for reducing the environmental impact in the aircraft life cycle. With a twofold contribution and linking different areas, this study presents a methodological proposal for the environmental assessment of the propulsion system change in a consequential Life Cycle Assessment perspective. This methodology uses data from both a modified conceptual aircraft design adapted to hybrid-electric aircraft and a battery study. Results show not only the environmental impacts of the required battery systems for each aircraft segment in a life cycle perspective, but also in what contexts the hybrid-electric propulsion may be considered a best alternative environmentally when compared with fuel propulsion systems. For that, a sensitivity analysis illustrate the results for different electricity mix contexts and for different battery cell capacities. The main contribution for the overall life cycle impact is the process of charging a battery system, therefore the source of electricity generation is crucial for the environmental sustainability of a hybrid-electric aircraft.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call