Abstract

A life cycle assessment was carried out to estimate the environmental impact of industry waste as aggregate in cement production. To confirm and add credibility to the study, an uncertainty analysis was also carried out. Results showed the impact seen from climate change, human toxicity, marine eutrophication, marine ecotoxicity, and freshwater eutrophication categories had an important contribution to overall environmental impact, due to energy use and direct emissions from clinker and limestone production stages. The most significant substances contribute to the climate change is CO2 to air; for the human toxicity, it is Hg to air and Mn to water; for the marine eutrophication and marine ecotoxicity, it is nitrate and Ni to water, respectively; for the freshwater eutrophication, it is phosphorus to water. Increasing electricity recovery rate, optimizing the raw material consumption for clinker production are highly recommended to reduce the adverse impact on the environment, and therefore reduce the pressure on the environment from dramatically increased hazardous industry waste disposal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.