Abstract

In recent years, considerable progress has been made in miscanthus research: improvement of management practices, breeding of new genotypes, especially for marginal conditions, and development of novel utilization options. The purpose of the current study was a holistic analysis of the environmental performance of such novel miscanthus-based value chains. In addition, the relevance of the analyzed environmental impact categories was assessed. A Life Cycle Assessment was conducted to analyse the environmental performance of the miscanthus-based value chains in 18 impact categories. In order to include the substitution of a reference product, a system expansion approach was used. In addition, a normalization step was applied. This allowed the relevance of these impact categories to be evaluated for each utilization pathway. The miscanthus was cultivated on six sites in Europe (Aberystwyth, Adana, Moscow, Potash, Stuttgart and Wageningen) and the biomass was utilized in the following six pathways: (1) small-scale combustion (heat)—chips; (2) small-scale combustion (heat)—pellets; (3) large-scale combustion (CHP)—biomass baled for transport and storage; (4) large-scale combustion (CHP)—pellets; (5) medium-scale biogas plant—ensiled miscanthus biomass; and (6) large-scale production of insulation material. Thus, in total, the environmental performance of 36 site × pathway combinations was assessed. The comparatively high normalized results of human toxicity, marine, and freshwater ecotoxicity, and freshwater eutrophication indicate the relevance of these impact categories in the assessment of miscanthus-based value chains. Differences between the six sites can almost entirely be attributed to variations in biomass yield. However, the environmental performance of the utilization pathways analyzed varied widely. The largest differences were shown for freshwater and marine ecotoxicity, and freshwater eutrophication. The production of insulation material had the lowest impact on the environment, with net benefits in all impact categories expect three (marine eutrophication, human toxicity, agricultural land occupation). This performance can be explained by the multiple use of the biomass, first as material and subsequently as an energy carrier, and by the substitution of an emission-intensive reference product. The results of this study emphasize the importance of assessing all environmental impacts when selecting appropriate utilization pathways.

Highlights

  • The developing European bioeconomy will lead to an increasing demand for sustainably produced biomass in the near future

  • This allows the impact of the substitution of a reference product through the utilization of 1 ha miscanthus to be included in the assessment for each value chain

  • The absolute values per ha for all utilization pathways on all sites analyzed are given in the Supplementary Material (Tables S2–S7)

Read more

Summary

Introduction

The developing European bioeconomy will lead to an increasing demand for sustainably produced biomass in the near future. Miscanthus is one of the leading candidate biomass crops and has the advantage that it can grow under marginal site conditions (Lewandowski et al, 2016). It is a perennial rhizomatous C4 grass originating from Southeast Asia, where it shows large genetic diversity. Miscanthus was introduced into Europe in 1935, where the genotype Miscanthus × giganteus is predominately cultivated (Clifton-Brown et al, 2015) It is a resource-efficient, low-input crop, which can achieve yields of well above 20 Mg ha−1 a−1 (dry matter) in Central Europe (Lewandowski and Schmidt, 2006; Iqbal et al, 2015) and more than 30 Mg ha−1 a−1 (dry matter) in southern Europe under irrigated conditions (Lewandowski et al, 2000). Due to its perennial nature and its high nitrogen- and water-use efficiency, miscanthus has a comparatively low impact on the environment as a biomass crop (Lewandowski et al, 2000; Voigt, 2015; McCalmont et al, 2017)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call